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Abstract
In this paper, we study a revised definition �̃c of the charged gap for the
strongly correlated electron models on small clusters, proposed by Nishino,
in a mathematically rigorous way. By applying a simplified version of Lieb’s
spin-reflection-positivity method, we show that this quantity is always positive
for the half-filled Hubbard model, the periodic Anderson model and the Kondo
lattice model. We also establish a model-dependent lower bound to the charged
gap. Our results show explicitly the role played by electron repulsion in opening
up a nonvanishing charged gap of a cluster.

PACS numbers: 71.10.Fd, 36.40.Cg, 71.27.+a

In the study of strongly correlated electron systems, the possible existence of charged gaps
and spin gaps in their excitation spectrum attracts many physicists’ interest. The quantum
transport and the magnetic properties of these systems are mainly affected by these gaps. In
particular, if a strongly correlated electron system has a nonzero charged gap at certain fillings,
it becomes an insulator. For instance, in a seminal paper [1], Lieb and Wu solved exactly
the one-dimensional Hubbard model and showed that, for any on-site Coulomb repulsion
U > 0, the system has a nonvanishing charged gap at half-filling. Consequently, it is always
a Mott insulator and the metal–insulator transition happens at Uc = 0 in this model. In higher
dimensions, it is still debatable whether the half-filled Hubbard model has a metal–insulator
transition at Uc > 0 [2, 3].

For some more complicated models, such as the periodic Anderson model and the Kondo
lattice model, exact solutions are difficult to obtain. In these cases, physicists mainly rely
on numerical calculations on small size samples to derive reliable results. For example,
Tsunetsugu et al [4] studied the magnetic transition in a one-dimensional Kondo lattice by
numerical diagonalization. They found that the spin gap is always nonzero when the system is
half-filled. Therefore, the ground state of the Kondo chain is a spin liquid. After introduction
of the density matrix renormalization group technique [5], Yu and White [6] could investigate
the same model on a larger sample and confirmed the previous results. Moreover, these authors
also observed that the charged gap of this model is larger than its spin excitation gap. A detailed

0305-4470/02/040941+10$30.00 © 2002 IOP Publishing Ltd Printed in the UK 941

http://stacks.iop.org/ja/35/941


942 G-S Tian and J-G Wang

review on the recent progresses in study of the one-dimensional Kondo lattice chain can be
found in [7].

In the above-mentioned works, the charged gap (or quasiparticle gap) of a strongly
correlated electron model is defined by

�c ≡ E0(N + 1) + E0(N − 1) − 2E0(N) (1)

where E0(N) is the ground-state energy in the sector of N electrons (in particular, the subspace
with N = N�, the total number of lattice sites, is called the half-filled sector). However, we
should notice that this definition has some shortcomings. First, it cannot be directly applied
when an external magnetic field is turned on and a Zeeman interaction term is added to the
Hamiltonian. Secondly, it is not suitable for numerical calculations on a small size sample
with a dozen of lattice sites. In this case, the finite size effects caused by the discreteness of the
single-particle levels makes �c a strongly parity-dependent quantity. Namely, as N� changes
from an even integer to an odd integer, �c fluctuates dramatically.

To overcome these problems, Nishino proposed an alternative definition of the charged
gap [8]. Let E0(N1, N2) be the ground-state energy of the system in the subspace with N1

up-spin and N2 down-spin electrons. Nishino introduced

�̃c(n↑, n↓) ≡ E0(n↑ + 1, n↓ + 1) + E0(n↑, n↓) − E0(n↑ + 1, n↓) − E0(n↑, n↓ + 1) (2)

for the charged gap of a strongly correlated model on a small cluster. In (2), n↑ and n↓ are
subject to the constraint condition

n↑ + n↓ + 1 = N�. (3)

Otherwise, they may take on any admissible integer values.
By explicitly calculating �̃c for an one-dimensional Hubbard cluster with three to ten

sites, Nishino showed numerically that it is indeed much less parity dependent than �c. He
also pointed out that, for n↑ = n↓ ∼ N�/2 and N� → ∞, �̃c tends to �c. Furthermore,
the effect of the Zeeman interaction on the charged gap can be easily taken into consideration
by choosing a specific pair of integers (n↑, n↓) with 2Sz = (n↑ − n↓). Therefore, Nishino’s
definition for the charged gap is more practical for numerical calculations on small clusters.

Theoretically, a natural and interesting question that arises is whether, for a strongly
correlated electron cluster with repulsive interactions, �̃c is always a non-negative quantity
for any admissible pair of integers (n↑, n↓), subject to condition (3).

Recently, by applying a generalized version of Lieb’s spin-reflection-positivity
technique [9–11], we studied the excitation gaps in the Hubbard model, the periodic Anderson
model, the Kondo lattice model and the double-exchange model [12–14]. We showed that,
in any dimensions, the charged gaps (1) of these models at half-filling are larger than their
spin excitation gaps. This conclusion confirms the previous results derived by numerical
calculations [7].

In the present paper, we shall employ the same method, which will be further simplified in
the following, to show that the charged gap �̃c introduced by Nishino for a strongly correlated
electron cluster is indeed a positive quantity. Our main results can be summarized in the
following theorem.

Theorem.For any pair of admissible integers n↑ and n↓ satisfying the constraint condition (3),
the charged gap �̃c(n↑, n↓) is a non-negative quantity, i.e.

�̃c(n↑, n↓) � 0 (4)

for the half-filled positive-U Hubbard model, the periodic Anderson model and the Kondo
lattice model on a bipartite cluster. Moreover, for a specific model, this inequality can be
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further strengthened. For example, for the half-filled positive-U Hubbard cluster, �̃c(n↑, n↓)
satisfies the following inequality

�̃c(n↑, n↓) � U

N�

(5)

where U is the Coulomb repulsion between electrons and N� is the number of sites in the
cluster.

By this theorem, �̃c(n↑, n↓) is nonvanishing for any U 
= 0 and n↑ + n↓ + 1 = N�.
Therefore, it properly characterizes the charged gap caused by the Coulomb correlation between
electrons in a small size cluster, even in an external magnetic field.

Before proceeding to the proof of this theorem, we would like to introduce some definitions
and useful notation.

Take a finite d-dimensional cluster � with N� sites. The Hamiltonian of the Hubbard
model is of the following form:

HH = −t
∑
σ

∑
〈ij〉

(
c

†
iσ cjσ + c

†
jσ ciσ

)
+ U

∑
i∈�

(
ni↑ − 1

2

)(
ni↓ − 1

2

)− µN̂. (6)

In (6), c†
iσ (ciσ ) is the fermion creation (annihilation) operator which creates (annihilates) an

itinerant electron of spin σ at site i. 〈ij〉 denotes a pair of cluster sites. The parameters t > 0
and U > 0 represent the kinetic energy and the on-site interaction between itinerant electrons,
respectively. µ is the chemical potential. In terms of HH, � is bipartite if it can be divided
into two separated sub-clusters A and B such that, electrons can only hop from a site in A (B)
to a site in B (A). In the following, we shall only consider models on a bipartite cluster.

Similarly, the Hamiltonians of the Anderson model and the Kondo lattice model are defined
by

HA = −t
∑
σ

∑
〈ij〉

(
c

†
iσ cjσ + c

†
jσ ciσ

)
+ V

∑
σ

∑
i∈�

(
c

†
iσ diσ + d

†
iσ ciσ

)
+U

∑
i∈�

(
nd

i↑ − 1
2

)(
nd

i↓ − 1
2

)− µN̂ (7)

and

HK = −t
∑
σ

∑
〈ij〉

(
c

†
iσ cjσ + c

†
jσ ciσ

)
+ J

∑
i∈�

σi · si − µN̂. (8)

In (7), ciσ (diσ ) represents the s(d)-orbital fermion operator at site i. Similarly, in (8), σi and
si denote the spin operators of itinerant electrons and localized electrons at site i, respectively,
and J > 0 is the antiferromagnetic super-exchange interaction between them. It is well known
that these spin operators can be expressed by spin- 1

2 fermion operators. For instance, we have

six ≡ 1
2

(
f

†
i↑fi↓ + f

†
i↓fi↑

)
siy ≡ 1

2i

(
f

†
i↑fi↓ − f

†
i↓fi↑

)
siz ≡ 1

2

(
n
f

i↑ − n
f

i↓
)

(9)

where fiσ denotes the localized fermion operator at site i. Since there is a localized spin at
each site in the Kondo lattice model, these operators are subject to the following constraint
condition

n
f

i = f
†
i↑fi↑ + f

†
i↓fi↓ = 1. (10)

For HA and HK, the definition of a bipartite cluster is slightly complicated. A detailed
discussion on this issue can be found in our previous paper [15].

These Hamiltonians enjoy some common symmetries, which are useful in our following
analysis. First, these Hamiltonians commute with the total particle number operators N̂ .
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Consequently, their Hilbert spaces can be divided into numerous subspaces {V (N)}. Each
of these subspaces is characterized by an integer N , the total number of fermions in the
system. In particular, the subspace V (N = N�) is called the half-filled subspace for the
Hubbard Hamiltonian. However, for both the Anderson model and the Kondo lattice model,
this subspace is V (N = 2N�).

Furthermore, it is easy to check that these Hamiltonians commute with the total spin
operators Ŝ+ = Ŝx + iŜy , Ŝ− = Ŝx − iŜy and Ŝz. Therefore, S2 and Sz are good quantum
numbers of these systems.

Finally, it has been established that, when µ = 0, the global ground states of these
Hamiltonians on a bipartite cluster coincide with their ground states in the corresponding
half-filled subspaces [9, 16]. Since we only consider the half-filled clusters in this paper, we
shall set µ = 0 in the following.

Now, we are ready to prove the theorem.

Proof of the theorem. In the following, we shall take the Hubbard model as a concrete
example. The same technique can be easily applied to both the periodic Anderson model and
the Kondo lattice model.

To begin with, let us consider the ground-state energy E0(n↑ + 1, n↓ + 1) of the Hubbard
Hamiltonian with n↑ + n↓ + 1 = N�. To apply the spin-reflection-positivity technique, we
introduce a unitary partial particle–hole transformation ÛH [17–19]1, which is defined by

Û
†
Hci↑ÛH = ci↑ Û

†
Hci↓ÛH = ε(i)c†

i↓ (11)

where ε(i) = 1, for i ∈ A and ε(i) = −1, for i ∈ B. Under this transformation,
the half-filled positive-U Hubbard Hamiltonian (with µ = 0) is mapped into a negative-U
Hamiltonian of the same form. In the meantime, the subspace V (n↑ + 1, n↓ + 1) is mapped
into V (n↑ + 1, N� − n↓ − 1) = V (n↑ + 1, n↑). Consequently, we have the identity

E0(n↑ + 1, n↓ + 1, U) = E0(n↑ + 1, n↑,−U) (12)

where E0(n↑ + 1, n↑,−U) denotes the ground-state energy of the negative-U Hubbard
Hamiltonian in the subspace V (n↑ + 1, n↑).

Next, we construct the ground-state wavefunction �0(n↑ + 1, n↑,−U). Following [10],
we define the quasi-fermion operators by

Ĉi↑ ≡ ci↑ Ĉi↓ ≡ (−1)N̂↑ci↓. (13)

In (13), N̂↑ represents the total number operator of up-spin fermions in the system. It is easy
to check that the conventional anticommutation relations

{Ĉiσ , Ĉjσ } = {Ĉ†
iσ , Ĉ

†
jσ } = 0 {Ĉ†

iσ , Ĉjσ } = δij (14)

still hold for operators with the same spin indices. However, operators {Ĉi↑}, now, commute
with {Ĉi↓}. Consequently, the negative-U Hubbard Hamiltonian at half-filling (with µ = 0)
can be written as

HH(−U,µ) = T̂↑ ⊗ Î↓ + Î↑ ⊗ T̂↓ − U
∑
i∈�

(
ni↑ − 1

2

)⊗ (
ni↓ − 1

2

)
. (15)

In (15), T̂σ = −t
∑

〈ij〉
(
Ĉ

†
iσ Ĉjσ + Ĉ

†
jσ Ĉiσ

)
is the hopping term of spin-σ fermions and Îσ

represents the identity operator, acting in the Hilbert space of spin-σ fermions. Furthermore,
�0(n↑ + 1, n↑,−U) can be written as a linear combination of {ψ↑

m ⊗ ψ
↓
n }, i.e.

�0(n↑ + 1, n↑,−U) =
∑
m,n

Wmnψ
↑
m ⊗ ψ↓

n . (16)

1 For some applications of the partial particle–hole transformation in studying the spectral functions of the Hubbard
model, see [19].
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In (16), ψσ
k denotes a configuration of spin-σ fermions. More explicitly, it is defined by

ψσ
k ≡ Ĉ

†
i1σ

· · · Ĉ†
iLσ

|0〉 (17)

where (i1, . . . , iL), with L = n↑ + 1, for σ =↑ and L = n↑, for σ =↓, indicate the positions
of fermions with spin σ in the lattice. |0〉 is the vacuum state. Apparently, the entire set {ψσ

k }
gives a natural basis of Vσ (L), the subspace of L quasi-fermions with spin σ .

By letting m be the row index and n be the column index, we can further write the
coefficients {Wmn} of �0(n↑ + 1, n↑,−U) into a matrix W . But, in general, this matrix is not

a square matrix. That is due to the fact that, for σ =↑, V↑(n↑ + 1) has dimension C
n↑+1
N�

, while
the dimension of V↓(n↑) is C

n↑
N�

. Generally, these dimensions are not equal. Mathematically,
it is rather difficult to deal with a nonsquare matrix. In our previous papers [12,13], we solved
this problem by enlarging the Hilbert subspaces of the negative-U Hubbard Hamiltonian and
then, constructing a new coefficient matrix W̃ , which is square. To W̃ , we were able to apply
the standard polar decomposition theorem in matrix theory [20]. However, in this process,
many unphysical states, which are not eigenvectors of the particle number operators N̂↑ and
N̂↓, were created. To eliminate these states, we had to set their coefficients in the expansion
of the wavefunction to be zero. That made our previous approach rather complicated.

In the following, we shall take a more straightforward approach, which is based on the
following singular polar decomposition theorem for the nonsquare matrices in matrix theory.

Lemma (singular polar decomposition theorem).Let A be an m × n matrix with m 
= n.
(i) If m < n, then there exist an m×m unitary matrix U1, an m×m diagonal semipositive

definite matrix �1 and an m × n matrix V1 such that

A = U1�1V1. (18)

Moreover, the m rows of matrix V1 are orthonormal vectors.
(ii) Similarly, if m > n, then there exist an m×n matrix V2, an n×n diagonal semipositive

definite matrix �2 and an n × n unitary matrix U2 such that

A = V2�2U2 (19)

with the n columns of V2 being orthonormal.

The proof of this theorem can be found in a standard textbook on matrix theory [20]. For
the reader’s convenience, we shall give a short proof of it in the appendix of this paper.

For definiteness, let us assume that the coefficient matrix W has more rows than columns.
In this case, the singular polar decomposition theorem tells us that there are three matrices
UW , VW and �W such that

W = VW�WUW (20)

where VW is an C
n↑+1
N�

× C
n↑
N�

matrix with orthonormal columns and UW is an C
n↑
N�

× C
n↑
N�

unitary matrix. Moreover, �W is an C
n↑
N�

× C
n↑
N�

diagonal matrix with λl � 0. Consequently,
the wavefunction �0(n↑ + 1, n↑,−U) can be rewritten as

�0(n↑ + 1, n↑,−U) =
∑
m,n

Wmnψ
↑
m ⊗ ψ↓

n =
∑
m,n

(VW�WUW)mn ψ
↑
m ⊗ ψ↓

n

=
D∑
l=1

λlξ
↑
l ⊗ φ

↓
l (21)

with D = C
n↑
N�

. In (21), ξ↑
l and φ

↓
l are defined by

ξ
↑
l =

∑
m

(VW)ml ψ
↑
m φ

↓
l =

∑
n

(UW)ln ψ
↓
n . (22)
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Since UW is unitary and the columns of VW are orthonormal, the new sets of vectors {ξ↑
l } and

{φ↓
l } are also orthonormal. More importantly, these new vectors {ξ↑

l } and {φ↓
l } are also the

eigenvectors of the particle number operators N̂↑ and N̂↓, respectively. Furthermore, because
the ground-state wavefunction �0(n↑ + 1, n↑,−U) is normalized, we have

〈�0(n↑ + 1, n↑,−U)|�0(n↑ + 1, n↑,−U)〉 = Tr W †W =
D∑
l=1

λ2
l = 1. (23)

With the simple form (21) of the wavefunction �0(n↑ + 1, n↑,−U), we now calculate its
energy E0(n↑ + 1, n↑,−U).

E0(n↑ + 1, n↑,−U)

= 〈�0(n↑ + 1, n↑,−U)|HH(−U)|�0(n↑ + 1, n↑,−U)〉

=
D∑
l=1

λ2
l

[〈ξ↑
l |T̂↑|ξ↑

l 〉 + 〈φ↓
l |T̂↓|φ↓

l 〉]
−U

∑
i∈�

( D∑
l1,l2=1

λl1λl2〈ξ↑
l2
|ni↑ − 1

2 |ξ↑
l1
〉〈φ↓

l2
|ni↓ − 1

2 |φ↓
l1
〉
)
. (24)

Now, without causing any confusion, we can drop the spin indices in (24). By applying
inequality |ab| � 1

2 (|a|2 + |b|2) to each term in the last summation of (24), we obtain

E0(n↑ + 1, n↑,−U)

� 1
2

D∑
l=1

λ2
l

[〈ξl|T̂ |ξl〉 + 〈ξl|T̂ |ξl〉
]

+ 1
2

D∑
l=1

λ2
l

[〈φl|T̂ |φl〉 + 〈φl|T̂ |φl〉
]

−U

2

∑
i∈�

( D∑
l1,l2=1

λl1λl2〈ξl2 |ni − 1

2
|ξl1〉〈ξl2 |ni − 1

2
|ξl1〉

)

−U

2

∑
i∈�

( D∑
l1,l2=1

λl1λl2〈φl2 |ni − 1

2
|φl1〉〈φl2 |ni − 1

2
|φl1〉

)
. (25)

The right-hand side of (25) can be further simplified by introducing new wavefunctions

�1 =
D∑
l=1

λlξ
↑
l ⊗ ξ̄

↓
l �2 =

D∑
l=1

λlφ
↑
l ⊗ φ̄

↓
l (26)

where ξ̄ σ
l and φ̄σ

l are the complex conjugates of ξσ
l and φσ

l , respectively. In terms of �1 and
�2, inequality (25) now reads

E0(n↑ + 1, n↑,−U) � 1
2 〈�1|HH(−U)|�1〉 + 1

2 〈�2|HH(−U)|�2〉. (27)

Notice that, by their constructions, �1 and �2 are actually wavefunctions in the subspaces
V (n↑ + 1, n↑ + 1) and V (n↑, n↑), respectively. Therefore, by the variational principle,
inequality (27) can be further reduced to

E0(n↑ + 1, n↑,−U) � 1
2E0(n↑ + 1, n↑ + 1,−U) + 1

2E0(n↑, n↑,−U). (28)

Under the inverse of the partial particle–hole transformation Û−1
H , (28) is transformed into the

following equivalent inequality

E0(n↑ + 1, n↓ + 1, U) � 1
2E0(n↑ + 1, n↓, U) + 1

2E0(n↑, n↓ + 1, U) (29)

as we showed in (12). In inequality (29), E0(N1, N2, U) denotes the ground-state energy of
the original positive-U Hubbard Hamiltonian in the subspace V (N1, N2).
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Similarly, by repeating the above steps, we can also show that

E0(n↑, n↓, U) � 1
2E0(n↑, n↓ + 1, U) + 1

2E0(n↑ + 1, n↓, U) (30)

holds true. Therefore, by summing up (29) and (30), we finally obtain

E0(n↑ + 1, n↓ + 1, U) + E0(n↑, n↓, U) � E0(n↑ + 1, n↓, U) + E0(n↑, n↓ + 1, U). (31)

Namely, the charged gap �̃c(n↑, n↓) defined in (2) is indeed a nonnegative quantity for any
pair of admissible integers n↑ and n↓ subject to the constraint condition (3).

To establish the lower bound (5) to �̃c(n↑, n↓), we now estimate the errors caused in
deriving inequality (27). By replacing inequality |ab| � |a|2/2 + |b|2/2 with identity

ab̄ + āb = |a|2 + |b|2 − |a − b|2 (32)

we can actually rewrite inequality (27) into an equation

E0(n↑ + 1, n↑,−U) = 1
2 〈�1|HH(−U)|�1〉 + 1

2 〈�2|HH(−U)|�2〉

+
U

2

∑
i∈�

∑
l1,l1

λl1λl2

∣∣∣∣∣〈ξl2 |ni↑ − 1

2
|ξl1〉 − 〈φl2 |ni↓ − 1

2
|φl1〉

∣∣∣∣∣
2

. (33)

Consequently, by the variational principle, we obtain an improved inequality

E0(n↑ + 1, n↑,−U) − 1
2E0(n↑ + 1, n↑ + 1,−U) − 1

2E0(n↑, n↑,−U)

� U

2

∑
i∈�

∑
l1,l1

λl1λl2

∣∣∣∣∣〈ξl2 |ni − 1

2
|ξl1〉 − 〈φl2 |ni − 1

2
|φl1〉

∣∣∣∣∣
2

� U

2

∑
i∈�

∑
l

λ2
l

(
〈ξl|ni − 1

2
|ξl〉 − 〈φl|ni − 1

2
|φl〉

)2

. (34)

The right-hand side of (34) can be further simplified by applying the Cauchy–Schwartz
inequality |∑ anbn|2 �

∑ |an|2
∑ |bn|2. We have

U

2

∑
i∈�

∑
l

λ2
l

(
〈ξl|ni − 1

2
|ξl〉 − 〈φl|ni − 1

2
|φl〉

)2

� U

2

[∑
i∈�

∑
l

λ2
l

]−1[∑
i∈�

∑
l

λ2
l (〈ξl|ni − 1

2 |ξl〉 − 〈φl|ni − 1
2 |φl〉)

]2

= U

2N�

〈�0(n↑ + 1, n↑,−U)|(N̂↑ − N̂↓)|�0(n↑ + 1, n↓,−U)〉2

= U

2N�

. (35)

As a result, inequality (29) is strengthened and can be rewritten as

�1 ≡ E0(n↑ + 1, n↓ + 1, U) − 1

2
E0(n↑ + 1, n↓, U) − 1

2
E0(n↑, n↓ + 1, U) � U

2N�

. (36)

Similarly, the same lower bound can also be established to the energy difference

�2 ≡ E0(n↑, n↓, U) − 1

2
E0(n↑ + 1, n↓, U) − 1

2
E0(n↑, n↓ + 1, U) � U

2N�

. (37)

Therefore, the charged gap �̃c = �1 + �2 is bounded below by U/N�.
Our theorem is proven. �
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Some remarks are in order.

Remark 1. In the above, we take the Hubbard Hamiltonian as a concrete example. In fact,
the proof can be easily extended to the periodic Anderson model, another strongly correlated
electron model without localized spins. However, for the Kondo lattice model, some technical
problems may arise, due to the constraint condition (10) on the localized spins.

As shown above, in the first step of proof, we need to introduce a proper partial particle–
hole transformation UK and map the Kondo lattice into a unitarily equivalent Hamiltonian
H̃K with negative coupling constants [16]. Under the same transformation, the constraint
condition (10) now reads

f̂
†
i↑f̂i↑ = f̂

†
i↓f̂i↓. (38)

It requires that, at each lattice site, there must be the same number of up-spin and down-spin
fermions. It is this constraint condition which makes the construction of the ground-state
wavefunction of H̃K rather difficult. To deal with this problem, one needs to decompose
the subspace V (n↑ + 1, n↑,−J ) of the transformed Hamiltonian H̃K into numerous smaller
subspaces and pick up the ones which are subject to condition (38). A detailed discussion on
these subtle points can be found in our previous papers [12–14].

Remark 2. In the second part of our proof, we established a lower bound to �̃c(n↑, n↓).
However, this bound tends to zero as N� → ∞. Therefore, it cannot tell us whether a
nonvanishing charged gap sustains in the thermodynamic limit. However, (33), the main
equation in establishing the lower bound to �̃c gives us a strong hint that this question
may be addressed by deriving more detailed information on the ground-state wavefunction
�̃0(n↑ + 1, n↑,−U) of the negative-U Hubbard Hamiltonian, by numerical calculations. A
definite conclusion could also be reached by applying more sophisticated methods than just
applying the Cauchy–Schwartz inequality. Further investigations in this direction will be
carried out in future.

In summary, in this paper, we investigate a revised definition �̃c of the charged gap
for the strongly correlated electron models on small clusters, proposed by Nishino [8]. By
applying a simplified version of Lieb’s spin-reflection-positivity method, we prove that this
quantity is always positive for the half-filled Hubbard model, the periodic Anderson model
and the Kondo lattice model. We also establish a model-dependent lower bound to the charged
gap. Our results show explicitly the role played by the electron repulsions in opening up a
nonvanishing charged gap in a small cluster.
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Appendix

In this appendix, for the reader’s convenience, we shall give a brief proof of the singular polar
decomposition theorem, which we applied to prove the main theorem of this paper. One can
find a more detailed proof of this theorem in [20].

Proof of the singular polar decomposition theorem. First, let us assume that m < n. In this
case, we consider matrix product AA†. It is an m×m semipositive definite matrix. Therefore,
it has m orthonormal eigenvectors (x1,x2, . . . ,xm), which satisfy equations

AA†xi = λ2
i xi , 1 � i � m. (39)
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Re-organizing {λi} in decreasing order

λ1 � λ2 � · · · � λK > λk+1 = · · · = λm = 0 (40)

we define a diagonal semipositive definite matrix �1 and an m × m unitary matrix U1 by

�1 =
(

λ1 · · · 0
· · · · · · ·
0 · · · λm

)
(41)

and

U1 = (x1,x2, . . . ,xm) (42)

where xi represents the ith column of matrix U1.
Next, we construct matrix V1. The first k rows of V1 are given by

V i
1 = 1

λi

(
A†xi

)†
. (43)

Since λi 
= 0 for 1 � i � k, these rows are well defined. To define the other m − k rows of
V1, we notice that the first k rows defined in (43) are orthonormal to each other. Actually, we
have

〈V i
1 |V j

1 〉 = 1

λiλj

〈A†xi |A†xj 〉

= 1

λiλj

x†
i AA†xj = 1

λiλj

λ2
jx

†
i xj = δij . (44)

In the last step of the above derivation, we used the definition of the vectors {xi}. On the other
hand, since each row V i

1 is an n-dimensional vector, one can find other m − k orthonormal
vectors z†

1, z
†
2, . . . , z

†
m−k , which are orthogonal to each V i

1 with 1 � i � k. We let them be
the remaining m − k rows of V1. Consequently, matrix V1 has m orthonormal rows.

Finally, we need to show that

U
†
1 A = �1V1 (45)

holds for the above defined matrices. Obviously, by their definitions, the first k rows of
U

†
1 A and �1V1 are correspondingly identical. Consequently, we need only to consider the

remaining m − k rows of both U
†
1 A and �1V1. For �1V1, these rows are zero vectors since

λk+1 = · · · = λm = 0. We now show that the corresponding rows in U
†
1 A are also zero vectors.

Let us take one row x†
l A of U †

1 A with k + 1 � l � m and calculate its norm.

〈x†
l A|x†

l A〉 =
n∑

α=1

( m∑
β=1

(xl)βAβα

)( m∑
γ=1

(xl)γ Aγα

)

=
n∑

α=1

[ m∑
β=1

m∑
γ=1

Aβα(xl)βAγα(xl)γ

]

=
n∑

α=1

[ m∑
β=1

m∑
γ=1

(xl)γ AγαA
†
αβ(xl)β

]
= x†

l AA†xl = λ2
l x

†
l xl = 0. (46)

Therefore, x†
l A = 0 and (45) is an identity.

Similarly, when m > n, one can prove that A = V2�2U2 holds by considering the matrix
product A†A instead of AA†. �
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